Platypus milk in antibiotic response
Researchers have replicated a platypus milk protein in their mission to create new antibiotics.
In 2010, scientists discovered that platypus milk contained unique antibacterial properties that could be used to fight superbugs.
Now a team of researchers at CSIRO working with Deakin University have solved a puzzle that helps explain why platypus milk is so potent - bringing it one step closer to being used to save lives.
The discovery was made by replicating a special protein contained in platypus milk in a laboratory setting.
“Platypus are such weird animals that it would make sense for them to have weird biochemistry,” CSIRO scientist and lead author on the research published in Structural Biology Communications, Dr Janet Newman said.
“The platypus belongs to the monotreme family, a small group of mammals that lay eggs and produce milk to feed their young. By taking a closer look at their milk, we’ve characterised a new protein that has unique antibacterial properties with the potential to save lives.”
As platypus don't have teats, they express milk onto their belly for the young to suckle, exposing the mother’s highly nutritious milk to the environment, leaving babies susceptible to the perils of bacteria.
Deakin University’s Dr Julie Sharp said researchers believed this was why the platypus milk contained a protein with rather unusual and protective antibacterial characteristics.
“We were interested to examine the protein’s structure and characteristics to find out exactly what part of the protein was doing what,” she said.
Using a range of high-tech tools, the team successfully made the protein, then deciphered its structure.
They found a unique, never-before-seen 3D fold.
Due to its ringlet-like formation, the researchers have dubbed the newly discovered protein fold the ‘Shirley Temple’, in tribute to the former child-actor’s distinctive curly hair.
Dr Newman said finding the new protein fold was pretty special.
“Although we’ve identified this highly unusual protein as only existing in monotremes, this discovery increases our knowledge of protein structures in general, and will go on to inform other drug discovery work,” she said.